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The asymptotic laws of shock waves propagation in a quiescent homogenous gas depend 

in general on conditions which define the motions of gas in the disturbed region behind 

the shock wave, and may vary considerably. These laws were the subject of detailed 

analysis in a number of works which dealt with plane, cylindrical and spherical shock 

waves under conditions in which gas motions behind the wave weakened the shock wave 

with consequent degeneration of the latter into an acoustic wave. For plane, cylindrical 

and spherical wave propagation these asymptotic laws of propagation are formulated as 

follows [l] 

Here ut is the velocity of sound in the quiescent gas, t is time, ra the shock wave CO- 

ordinate, and to and ro are certain constants. 

The degeneration of a shock wave into an acoustic one takes place in accordance with 

the asymptotic Formulas (1) at infinity only, and the shock wave has no asymptote in the 

rr-plane, receding to any distance away from aa arbitrary straight line r - at (Z - to) = 

= const. 

An analysis is made in this paper of the asymptotic laws of detonation wave propaga- 

tion under conditions in which a strong detonation wave is weakened by gas motions be- 

hind it, and transformed into a Chapman - Jouguet wave. It is shown that in contrast to 

the asymptotic behavior of shock waves, a strong plane detonation wave tends at infinity 

to the asymptote r - 0, (t - to) = const (c, is the propagation velocity of the Chapmau-- 

Jouguet detonation wave), while the transformation of strong cylindrical, or spherical 

detonation waves into a Chapman - Jouguet wave may,‘in general, occur at finite distances. 

The flow pattern of cylindrical and spherical waves after these have reached the Chapman 

- Jouguet mode is also studied. 

A brief account of the results of this work on plane waves is given in [Z]. 

Let v, p, and p be respectively the gas velocity, pressure, and density, c the detona- 

tion wave propagation velocity, and y the gas specific heat ratio; subscript 1 denotes the 

pressure and density of the gas at rest. The conditions at the detonation wave may then b8 

written as follows: 

- PlC = p @ - 4, w" + Pl = p@ -c)" + P 
I -p2+& +Q=+(u-c)"+~$-$ 

(2) 
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Ncre Q is the heat refeaee in 8% unit ma98 of gas. Sot-&g Eqs. (21 for Y, p, and pt we 
obtain 

ax +“9’-+1/(+P?Jw-Q/9J~ 
u==qT ?/(I (3) 

Here 4 I al 2fc2, and qj is the. value of p corresponding to the Chspman - Jouguet 

detonation wave vefocity, defined by 

Let us consider exprsssioas defining the gas parameters behind a detonation wave of 
an intensity only slightly higher than that of the Chapman - Jouguet wave. For the defini- 
tion of the deviation of the detonation wave from that of the Chapman - Jouguet wave we 
intro&ace parameter 8 = 1 - q/e. With the aid of this parameter we sbali present Expres- 
sions (3) as fallows: 

into power series cf this parameter, and limit our expansions to terms containing its first 
power (we assume the detonation wave to ba sufficiently strong% so that g1 is not close to 

unity). We then obtein 

~~~~ vr, Pfr pJ are respectively the v&es of velocity, pressure and density of tbe gas 
behind the Chapman - jouguet wave defied as follows: 

It follows from this thnt the gss parameters behind detonation wavea c10se to tbe Chap- 
man - foaguet waves satisfy the snmc: relationships as the Riemann travelling waves, with 
an approximation of the order up to and in&ding E *A 1 We &all make use of this deduction 

later, when considering the asymptotic behavior of plans detonation waves. We note that 
for ordinary shock waves (qr = 1) p8?mGters p/p' and a - % (y - 1) u remain constant 
behind the wove+ if terms np to and in&ding 8’ are considered. 

The eguetiotu~ of o~~~e~s~ona~ motions of g~rs 
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(6) 

(here v = 1, 2, 3 corresponds respectively to motions in the presence of plane, cylindrical, 

or spherical waves), together with conditions (2) at the detonation wave make it possible 

to express the derivatives of gasdynamic parameters with respect to coordinate r behind 

the wave by means of gas parameters of the latter, as well as parameter dq/dr which de- 

fines the wave acceleration. We, thus, obtain the expression for derivative 6’~/arl. 

2(i+q)+ v/(1-qqJ)@-q/qpJ) v dq (V-l)QV 1 +v/a1 vi 
(7) 

av 
ar,= I 

--_- 
~(1-!fQQJ)(l-q//J) q dr r l/tl - (1qJ)(‘- q / eJ) 

We shall begin by considering a plane detonation wave (V = 1). In this case the flow 

behind a detonation wave represents, as was shown above, a Riemann travelling wave with 

an approximation up to and including terns of the order of E’/s. For such a wave we have 

v =Q, [?‘-((a +V)tl, a---/&‘---i)V =UJ---/&-i)V,j (8) 

where a is the velocity of sound, and @ an arbitrary function the form of which determines 

the type of the travelling wave. Let us assume that function (0 ([) is such that @ (so) = 

=u ) 
3 

and that r @ ‘( 5) + 00 whenr + m andt+&, with to being the limit of t= r - (a + 

+ u t at the detonation wave. 

From Eqs. (8) we easily deduce that 
au 
ar= 

@'c&J 
1 + ‘/a (7 + 1) D (El 

With r + 00 a detonation wave tends to the Chapman - Jouguet detonation mode, so that 

cJt/r, -+ 1. Consequently. 

av 
I 

2 CJ 
37, 

+-- npIi r-+00 
r+l r8 

Substituting this expression for au/dr 1, in Formula (7), and retaining in its right-hand 

side the main terms of 8 only, we derive the equation which leads to the establishment of 

the asymptotic law of detonation wave propagation 

2 1 de -=- -- 
1 

Integration of this yields 
e dr, 

era2 = rO* mm 
rl-:t )1 

dt = 
J dr, raa = Cl* (r0 = const) 

Integrating once more, and aging Expressions (S), we find the asymptotic law of plain 

detonation wave propagation, as well as asymptotic formulas for parameters of the gas 

behind the wave 

+.-*) 

(9) 

Ito is a certain constant) 
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It follows from Formulas (9) that a plane detonation wave 
degenerating into a Chapman - Jonguet wave tends towards 
asymptote 

r - c_rt = const 
This behavior differs substantially from that of the asymp- 

totic behavior of an ordinary plane shock wave degenerating 
into an acoustic wave. According to the first of Eqs. (1) a 
shock wave has no asymptote, and intersects the straight 
line r - 0 t - const for any large value of the constant in 
the etraig A- t line equation. The difference between the 
asymptotic behavior of a plane detonation wave (curve al 
and a plane shock wave (curve a) is shown on Fig. 1. 

We shall now show that transition to the Chapman - 
Jonguet detonation pattern of flows in the presence of cyl- 
indrical, or spherical detonation waves propagating in a gas 
at rest differs from flows in the presence of plane waves 
that it may occur at a finite distance. 

We revert to Eq. (7) which defines the derivative du/dr 
at points of a detonation wave. For small 8 this becomes 

r.!? VJ rs de 

8 ar s=----- i-qJ e dr, 
(101 

It follows from this that for selfaimilar motions with v $ I, the negative magnitude 
r,au/arl. tends in its absolute value to infinity at the rate of ~~11, when 8 tends to zero 
Assuming further that the flow behind the detonation wave weakens the latter so that with 
E’decreadng to zero the absolute value of r, au/dr 1. tends to infinity at a slower rate 
than in the case of relkimilar motions. We now obtain from Eq. (10) the following asymp 
totic Eq.: 

T_!!!- 
LI dr, 

= - Ne% 
(A’>01 

Integration of this equation yields 

g’la = &.oY: - +l+ 

It will be seen from this formula that E becomes zero at a finite value of ra , therefore 

r a the transition to the Chapman - Jouguet detonation pat- 

D 
‘/ s 

tern occurs at a finite distance. 

/’ 

Mz 

We shall study the conditions under which the above 
assumption is fulfilled, and shall determine the flow in the 

0 neighborhood of the point of transition to the Chapman - 
Jouguet mode. 

Let detonation wave DO (Fig. 2) be gradually weakened 

D 
so that parameter E becomes zero at point 0, at t = to, and 
then remains constant with further increaeea of t. We select 

c 
c, r the origin of time so that the equation of the Chapman - 

to 
Jouguet 01 wave may be written in the form of r = c, t. 

We substitute in the Eqs. of motion (6) for the unknown 
Fig. 2 functions (0, p, p) and the independent parameters r, t the 

following new variables 

u = VJV’ p=pJP, p=pJR, A=+, r=ln+ 
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After transformation, we obtain’ 

435 

(111 

aP -- 

We shall se% the solution of system (11) in the neighborhood of point 0 behind the 

detonation wave. It is easy to establish that system (11) has three sets of characteristics, 

and that along the characteristics of the first two sets (acoustic) the following relation- 

ships’ must be fulfilled. 

(12al 

1 -L+ 
r(i -q4) p 

r+lRV’h.+~_~~)+Y-1L-J 
(r+ da p ( r+l h. (12bl 

and along the characteristic of the third set (particle trajectories) 

h’-+ x -sv=o, RP’- yPR’ = 0 (12cl 

Here, the dot denotes differentiation along the characteristic with respect tu 7; 

If the values of functions I’= yo (T), p = po (7), R = Ro (7) do not satisfy the char- 

acteristic relationships along a certain line h= ho (~1, then the solution of Eqs. (111 in 

the neighborhood of this line may be expressed by expansion 

v-v, =v,*(h-&) +v,*(h--&)s f... (13) 
with similar expansions for P and R. Consecutive coefficients of these expansions are 

uniquely defined by the values of functions along line X = X,(T). When the initial data 

fulfil the characteristic relationships, then one of the first coefficients of series (13) may, 

for a certain value of T, be selected arbitrarily (for example Vi*(O) for solutions w.ith 

initial data on the characteristic of the first, or second set, and R,*(O) with initial data on 

the third set characteristic). 

Let functions X,, Vo, Po and Ro conform to one of the first characteristic refationships 

(12a1, but not to the second. This means that line X = A,( 7) is an envelope of the charac- 
teristics. 

In this case there are no solutions in the form of (13). There exist, however, solutions 

of Eqs. (11) in the form of series as follows: 

v=v,+v,~/hJ--++Y,(h,--)+... 

the coefficients of which are uniquely defined by initial data along line h= ho (7). In 
fact, a substitution of expansions (14) into Eqs. (11) yields a system of relationships 

which permits a consecutive determination of coefficients of these. We write down the 

first two of such systems 

(141 

(15al 

1-9 7flRY~- (ho’+h,--VV,)R,=O 

Ro(h,-+ho--~V,)l/l-_l(rI:~~~_q)p,=O 

( A; + ho - 2 “0) (RJPI - yP,,Rr) = 0 
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+ $j RUV12 - (hl’ -+- hJ - 5 vcl j RlV1 (15bf 

2@fXo- r+l ’ - q Fro 
) 

(RoP, - rPoRa) = - 2 (I?,% - r&RJ’) + 

+ (7 - 1) (ho’ + a> - $$j Yo) &RI + &+ (M’I - “IPoJG) VI 
In consequence of the assumption that functions he, Vo, PO, and Ro satisfy one of the 

conditiona (ZZa), the determinant of coefficients of F,, P,, RI in the first system of reia- 
tionships is equal to zero. Then 

i”-_q 
P1=y--- 

POVl 

r+~~o’+~---o(~-~~/(r+~) 
(16) 

R .-- WI 
l-~+l~o’i-ho-~*(~-~Bf/(r+~) 

As the determinant of system (15b) with respect to V,, P1, R2. coincides with that of 
system fl5a), and is, therefore, also zero, the determination of parameters Y,, P,, R, 

requires the fulfilment of the known condition, which together with Eqs. (16) makes it pos- 

sible to derive the following expression for Vt 

Y19,27fl cq(h5%- 2 ~&-&+” 071 

+ _Lrirl_!S?&j~~S+ &-- ;3v,j + v?&$] 
(7 + 41s PO 

With this condition fulfilled, P, attd R, may be defined in terms of Y,. For the deter- 
mination of V, use is made of the solvability condition of the system for subsequent 
coefficient8 of expansions (14), etc. 

Thus, expansions (14) yield the solution of Eqs. (11) which depends on the arbitrary 
fusctfons A,, v,, pa, R, related to each other by one of Eqs. f12s). We note that when in 

Formula (17) we have V, = 0, then functions A~, v,, Par Re atso fulfil Eq. (12b)r which 
meana that the solotion is determined by expansion (13) with an arbitrary value VI+(O). 

We shall use this solution for the construction of flows with strong cylindrical and 
spherical detonation waves which degenerate at finite dietsucee into Chapman - Joagaet 
WPves. 

We shall begin by considering the flow behind a Chapman - Jooguet wave* 
Ott tha Chapman - Jonguet WBVe, i.e. with x = 1, we obviously heve Y = P e R = 1. It 

is easy to prove that these initial data are not characteristic when u # 1, but satisfy the 
rsladonahip (12a) with the upper sign. Therefore, the Chapman - Jougnet wave is the 
envelops of acoustic chsractedstics when v f 1. In accordsnce with previously made state- 
mesta, the solution behind the wave will be of the form 

v=~+V,g=3+-.*, PI=1+P~~1-h+*.* 

R=i+R&-f=-&+-. 
Fmm Egs. (16) and (17) we obtain 

&=rR1=rgq 1, 
i-qv 

v1=*‘v1*, YIO==L 
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Ail of the subsequent coefficients of series (14) are, clearly, constants as well, SO 

that the flow behind the Chapman - Jouguet wave is necessarily self-similar, as though 

the detonation wave were a Chapman - Jouguet wave everywhere beginning at the instant 

t = 0. Depending on the selectionof the sign of the expression of V,, two different self- 

similar flows with a Chapman - Jouguet detonation wave are possible. With a positive sign 

we have a compression flow behind the detonation wave. Such flows occur in the presence 

of a cylindrical, or spherical piston expanding at a corresponding constant velocity. When 

the sign of the expression of VI is negative, we obtain a rarefaction flow. This flow may 

either extend continuously to the center r = 0, thus corresponding to the well known case 

of detonation wave propagation from a point (or line) ignition source, or it may join the 

compression flow via the compression shock, and extend up to the surface of the cylindrical, 

or spherical piston expanding at a constant velocity lower than that at which a compression 

flow is obtained throughout the region between the detonation wave and the piston. 

The described self-similar flows are completely analogous to the self-similar stationary 

flows behind conical detonation waves analyzed in detail in works [3 and 41. 

We shall now consider a flow behind that part of a detonation wave DO which precedes 

the onset of the Chapman - Jouguet mode. (Fig. 2). 

We shall seek a solution in this region in the form of series (14). in which functions 

A,* v, PO and R, fulfil condition (12a) taken with the upper sign, i.e. condition 

(18) 

We shall limit our analysis to the small neighborhood of point 0, and assume that for 

small 7 functions X0, v,, p. aud Rot and consequently all subsequent coefficients of 

series (14) may be represented by integral powers of 7, such as 

VO = 1 +volz + . ..( v, =vlo +v,,z + . . . . 

PO = 1 + Polz + . ..( Pl = PI0 + P,,z + . . . 

R, = 1 +R,,z + . . . . R1 =R10 + R,,z + . . . 

a, =I $hlZ +a,? +... 
From condition (18) we derive 

From conditions (16) and (171 we find 

v1,,3= 2;r+q PO1 1 VOI ) v-l L 1-q r(l-q) r+q r+l 1 
We rewrite Equations (5) at the detonation wave in the form 

?L, = 1 -L d,T2 + d,T” + . . . 
Ry virtue of 

E = 1 - (A;, -i- A.,,) ’ 
it follows from (5) that d, = 0, and 

(19) 

(20) 

(21) 

(22) 

(23) 

Formulas (20) to (23) define the seven parameters A,, V,;, Pol, &,I, V~OP p,o and RIO 
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in terms of d,. Subsequent terms of these series may be similarly found for hot Y~c l W 
.- 
Y 1’ .*I) 

It is convenient to expressall magnitudes in Formulas (20) to (23) in terms of Vt, as 

The latter dependence, represented on Fig. 3, defines the relation between Vto and 
pnrameter d, which characterizes the wave form. 

d/(“z 
a$_____-_------__,_ ..-..--..II_--c_MI 

%&” 
/ t 

4 1 2 3 

Fig. 3 

Ford, = 0 the solution is a two-valued one: V,, = & V,o. This corresponds to cases 
considered above in which eitber self-similar compression, or rarefaction flows ocour 

behind the Chapman - Jouguat detonation wave. The solution is single-valued far all 

d, > 0, with parameter Vto increasing monotonously from k’,’ with the increase of dp and 
tending to infinity when d -)I ?4 Vlo2. The solution in the region DC0 (Fig. 2) bounded by 

the detonation wave segment DO and segments of characteristics CO of the first, and DC 

of the second set. It is easy to verify, when considering the validity of this solution in the 
region of positive values of T beyond the characteristic CO, that conditions at the detona- 

tion wave wilf be fulfilled, if the wave equation for 7 > 0 is taken in the form 

n*=$+dao++..., &oEd~~~ 

Kith this, the detonation wave will be super-compressed everywhere, with the exception 
of point 0. At point 0, at which tbe Chapman - Jouguet mode is obtained, the detonation 
wave will have an inflection point. The wave form for the case of positive I is shown on 

Fig. 2 by the dotted line 013,. 

Let us assume that behind the characteristic CO the derived flow is joined by another 
in which the velocity increase along segment CC, of characteristic DCC, differs from that 
of the analytical extension of the flow from the DC0 region. 

Let us determine the values of functions f;, P, and R along the CO characteristic* For 

this purpose we shall, first of all find equations of the characteristic for the generafized 
case of flows defined by Formufaa (19) to (22). XJsing expansions (14) and f191, and also 
Eqs. (20) and (21), we obtain from relationships fl2a), after certain transfo~ations, the 

following equations for the characteristics of the first and second sets: 

~$-h=1~21i,r+*~v,,~I+ha7’_t...--+f.. 

+&-Tw-!7~ 
2(r+f) 

VI0 v’l -j- h$@ + * - *- x + - * * 
Looking for the expression of the first set characteristic passing through point T = 0, 

A = 1 in the form of 
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we obtain 

Cl = 0, (ce - A*) 7 = 
It follows from this that 

%(1-q) YlO VKGIq 

h = 1+ [Aa- l/M (1- q)’ v10*1 I+ + * * ’ (261 

The right-hand segment of curve (26) is to be taken for I’,,> 0, with T < 0, and the 
left-hand segment of this cnrve for I’,, < 0 with T > 0. 

The characteristic Eq. (26) for flows behind a detonation wave defined by FO~IU~UO 

(24) becomes 
h ==. 1 - ‘Ite (1 - q))” Yp ++ *.. 

while for velocity V along the characteristic we obtain 
v = i - ‘Ia (1 - f$ V;a. +z -& (27) 

Velocity distribution (as well as that of pressure and density) and characteristic CO 

will thus be independent of parameter d,, and will be the same as those in a self-similar 
flow behind a Chapman - Jongnet wave. This makes it pouaible to extend the flow defined 
for a certain d, > 0 by Formulas (24) beyond region DCO, and to join it along characteris- 
tic CO to a flow defined by the asme Font&as (24), but with d, of a different value. With 
this the derivative of the detonation curvature will suffer a discontinuity at point 0. Weak 
diacontinnities will also occur in the flow region, expanding from point 0 along the char- 
acteristic of the second set, and along the trajectory. Such discontinuities do not, however, 
appear if only the first two terms of expartaiona (12) are taken into account. In particular, 
if su extension of the flow beyond the characteristic with d, = 0, i.e. of a self-similar 
compression flow is considered, then the detonation wave will remain a Chapman - Jonguet 
wave even beyond point 0. 

Solutions (24) are not applicable to the case of a flow extending beyond region DCO, if 
the velocity increase along segment CC, of the second set chsracteriatic is lower than 
that of a self-similar compression flow, as in these solutions Yto > VI0 for a11 values of 
d,. In this case we have behind the Chapman - Jongnet wave 01 : a region bounded by 
either the compression shock, or the first set characteristic emanating from point 0, in 
which a self-similar rarefaction wave appears. 

Let the equation of the discontinuity line coming out of point 0 be 

(28) 
From what was said before about the- characteristic of the first set in a rarefaction flow, 

it follows that AZ,< 1. 
Along the discontinuity line the following conservation laws must be satisfied 

P1(h- C) = pz(vay--C), P1(~l-C)a+pt=PI(Un-C)a+p* 

~(vl-C)a+~~=~(Va-C)2+~~~ 

With the variables used here these relationships, when solved for patsmeters behind 
the discontinuity (superscript+), become 

(29) 

Parameters If, R and P correspond to tbe already known aelf-aimilar rarefaction flow in 
front of the discontinuity, and c/ cJ P X,’ + A,. 

A aubatitution of expressiona for I’, P, R, and h, into Eqa. (29) yields 
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a = l/* (i- q) Vlo2 A (I- 244) (30) 

Looking again for a solution behind the discontinuity line in the form of (19). we take 

into consideration conditions (20) to (22), stipulate the fulfillment of conditions (30) for 

I 

1 A 

%/if” 
-1 0 1 

Fig. 4 

,lr 

\ 
L 1 

t 

0 
Fig. 5 

A = Ai, and find the same Expressions (24) for the 
definition of all parameters in terms of V,,+, while the 

interdependence of parameters Vto+ and A, defining the 

discontinuity line curvature, will, of course, differ 

from that of the last relationship of (241, having the 
form (superscript+ has been omitted) 

VI,,~ i._ Vlea + Vlq vVlo2 - (1 - A2) Vlo2 = 
= VloiA (I- 2A) 

This dependence is shown diagramatically on Fig. 4. 

For A = 0 the flow behind a Chapman - Jouguet wave is 

a self-similar compression flow with V,, = V,‘. With 

increasing A parameter V,, decreases, becoming zero 
for A = 1. The compression shock bounding the self- 

similar rarefaction flow behind the Chapman - Jouguet 

wave degenerates with this into a characteristic. With 

a further decrease of V,,, the equality A = 1 remains 
unchanged, but the flow joining the characteristic 
changes, becoming an analytical extension of the self- 

similar rarefaction flow in front of the characteristic for 
the particular case of Y,, x: - Vt”. With a still further 
decrease of V,, the characteristic is joined by a flow 
with a stronger rarefaction than that of a self-similar 

wave. For positive values of parameter VI,,, i.e. when 
discontinuity OS is a compression shock, the derived 

solutions, dependent on psrsmeter A (i.e. on the curvature of the discontinuity line OS), 

may be joined in a continuous msnner along characteristic CO to the flow behind the deton- 

ation wave defined by Eqs. (24). 
It can be e8mily verified that along characteristic CO the velocity in the flow behind 

the discontinuity is expressed by - 

v E 1 + vo1+7 + vxo+ ‘t/[h,+‘/X, (l-qy vl”*]+ + - . - = 

=1 +l/*(~-q)(vlos- !Y? 7 + ‘lo (1 - q) VlO+‘I vm+z I$- * - * (31) 

Jn accordance with this expression the value of V for I’,,‘> 0 is defined by Formula 

V=l - ‘I, (1 - q) Vl”a z + . . . 

and coincides with that defined by Formula (27) for flows behind 8 detonation wave. This 

is evidently trae for the pressors and density puuneters. We note that the derivatives of 
V, P, and R with respect to A rsmafn continuous when crossing characteristic CO. 

Vslaes of these derfvstives, ati &own on the example of the derivative of V 
av. ’ 

I 

2 
7X-e =(i-_++..* 

uo independent of parameters A and da. 
Chtusctariatic (28) 8rtd line x = A, (7) coincide when Vto+= 0. The solution behind 

the characteristfc may be sought in the form gfven by (13). and with the aid of Formulas 

(24) for Yo r snd As we find that 
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Here pzo* is arbitrary. For any I’,,,* this solution joins continuously the solution in 

region DCO. The flow between characteristics CO and OS does not have any singularities 

for 7-z 0, X = 1. 

For V,o+ < 0 solutions behind the characteristic OS are given by expansions (141, and 

have a singularity at point 7 = 0, h = 1. 

It follows from Eq. (31) for the velocity along characteristic CO that for I’,,+< 6 the 

solution behind characteristic OS cannot be continuously joined to the solution behind a 

detonation wave along characteristic CO. It is easy to see that a continuous joining of 

these two solutions along the second set characteristic originating at the Chapman - 

Jouguet point is not possible either. In accordauce with the second Formula of (25) the eq- 

nation of such a characteristic may be obtained in the following form 

Because of the assumption that V,, + < 0, while in the flow behind a detonation wave 

V,, > 0, this characteristic is different for each of the flows considered. We note that a 

continuous joining of solutions along the second set characteristic is not possible when 

v,o+ > 0. 

The derived solution defines in particular the transition of a self-similar compression 

flow I (Fig. 5) with a Chapman - Jouguet wave 01, originated by the piston expansion at 

a corresponding constant velocity, into a rarefaction flow 2 with a Chapman - Jouguet 

wave which develops after the piston has come to rest. 
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